Тайны вселенной: откуда все взялось, как началось и чем закончится

Содержание

От субатомных частиц в триллионы раз меньше протона до звезд с объемом в 5 миллиардов раз больше, чем у Солнца, все, что занимает пространство во Вселенной, состоит из материи.

Все, что мы видим, и даже то, что мы не можем воспринять, потому что наши чувства не могут это уловить (например, частицы газа в нашей атмосфере), состоит из материи. Таким образом, Вселенная представляет собой смесь вещества и энергии, которые тесно связаны между собой.

Но все ли одинаково? Очевидно нет. В зависимости от характеристик и свойств его можно классифицировать по-разному.. Ясно то, что любой вообразимый объект Космоса войдет в один из типов материи, которые мы увидим в сегодняшней статье.

Сегодня мы отправимся в путешествие по Вселенной, чтобы обнаружить и проанализировать все существующие типы материи, от материи, из которой состоят живые существа, до загадочной и удивительной темной материи.

Рекомендуем прочитать: «30 невероятных диковинок Вселенной»

Нейтрино

Нейтрино – это субатомная частица, которая очень похожа на электрон, но не имеет электрического заряда и очень маленькой массы, которая может даже быть нулевой.

Нейтрино являются одной из самых распространенных частиц во Вселенной. Однако, поскольку они очень мало взаимодействуют с материей, их невероятно сложно обнаружить.

Для обнаружения нейтрино требуются очень большие и очень чувствительные детекторы. Как правило, нейтрино с низкой энергией проходит через многие световые годы нормальной материи, прежде чем взаимодействовать с чем-либо.

Следовательно, все наземные нейтринные эксперименты основаны на измерении крошечной доли нейтрино, которые взаимодействуют в детекторах разумного размера.

Космологические представления греков

Греческие философы заложили астрономические представления, которыми мы пользуемся и сегодня. Разные философы их школы имели свою точку зрения на модель мироздания. В большинстве своём они придерживались геоцентрической системы мира.

Геоцентризм — это убеждение, что неподвижная Земля находится в центре мироздания, а Солнце, Луна и звёзды вращаются вокруг неё.

Масштабную энциклопедию астрономических и математических знаний создал Птолемей. Описанная им геоцентрическая система мира была наиболее общепризнанной до коперниканского переворота в эпоху Возрождения. Аристотель также считал, что Земля неподвижна, указывая, что небесные тела прикреплены к твёрдым «небесным сферам».

Некоторые представители пифагорейской школы полагали, что и, Солнце, и Луна и планеты вращаются вокруг Центрального Огня, Гестии. Такую модель называют пироцентрической.

Аристарх Самосский предложил гелиоцентрическую систему мира, согласно которой Солнце — центральное небесное тело, а также предположил, что Земля меньше Солнца. Однако идея о том, что центр космоса — Земля, была популярна ещё долго.

Откуда взялись атомы?

Как известно, сейчас различные атомы сгруппированы в таблицу Менделеева. В ней насчитывается 118 (а если с предсказанными, но еще не открытыми элементами — 126) элементов, не считая изотопов. Но так было далеко не всегда.

В самом начале формирования Вселенной никаких атомов не было и подавно, существовали лишь элементарные частицы, под воздействием огромных температур взаимодействующие между собой. Как сказал бы поэт, это был настоящий апофеоз частиц.  В первые три минуты существования Вселенной, из-за понижения температуры и совпадения еще целой кучи факторов, запустился процесс первичного нуклеосинтеза, когда из элементарных частиц появились первые элементы: водород, гелий, литий и дейтерий (тяжелый водород). Именно из этих элементов образовались первые звезды, в недрах которых проходили термоядерные реакции, в результате которых водород и гелий «сгорали», образуя более тяжелые элементы. Если звезда была достаточно большой, то свою жизнь она заканчивала так называемым взрывом «сверхновой», в результате которого атомы выбрасывались в окружающее пространство. Так и получилась вся таблица Менделеева.

Вселенная

Лазеры

Это слово, конечно, слышали все. Современные лазеры в разных своих ипостасях используются сейчас повсеместно. В медицине, например, глазная хирургия, в промышленности – сварка металлических конструкций, в оборонной промышленности – системы наведения, в космосе и исследованиях термоядерных реакций. Без сомнения можно сказать, что лазеры – одно из величайших технологических достижений XX века.

Так что такое лазер? Если говорить по-простому, то эта штука, устроена примерно так. Она состоит из «рабочего тела» и системы «накачки». Рабочим телом может быть какой-то газ или кристаллическое вещество. Система «накачки» определенным образом вкачивает (потому она так и называется) энергию в рабочее тело. Это приводит составляющие его (рабочего тела) атомы в «возбужденное» состояние. И они излучают электромагнитные волны с определенной частотой (так называемое когерентное излучение). Это излучение распространяется в пространстве в виде узкого, практически не рассеивающегося, пучка, и, достигая объекта применения (глаза или металлической конструкции), делает свое дело. Естественно, что лазеры, применяющиеся в разных сферах нашей жизни, обладают разными свойствами и разной мощностью.

Так откуда все это появилось? Кто эти лазеры изобрел? А вот так однозначно и не скажешь.

Спор Эйнштейна и Бора

Интересно, что Эйнштейн получил свою «нобелевку» вовсе не за теорию относительности, а за одну небольшую статью о квантовой механике, объяснявшей явление так называемого «фотоэффекта». Эйнштейн и Бор, тоже нобелевский лауреат, всю жизнь вели дискуссию об основах этой науки.

Дело все в том, что, как мы уже говорили, микромир живет по вероятностным законам. Эйнштейн по этому поводу однажды сказал – «Господь не играет в кости». На что Бор ему ответил: «Альберт, не надо учить Бога, как ему жить».

Суть спора, кстати, много сделавшего для развития науки, состояла в следующем. Эйнштейн считал, что весь математический аппарат квантовой механики не отражает истинного устройства микромира, а просто является такой хорошей придумкой, которая позволяет с высокой точностью предсказывать происходящие там события. А Бор отвечал ему, что это не так: если наши вычисления совпадают с результатами наблюдений и экспериментов, то они описывают истинное устройство мира. Сейчас в научном сообществе преобладает точка зрения Бора. Хотя вопросов накопилось много. Они носят фундаментальный характер, и ответов на них пока нет. Что касается практических применений, то здесь, как мы расскажем далее, все более или менее в порядке.

Принцип квантовой неопределенности

Еще одна удивительная особенность микромира была открыта, когда ученые провели известный эксперимент, демонстрирующий как один объект может быть в двух местах одновременно.

Оказалось, что во вселенной мельчайших частиц кроме того, что информация может распространяться со сверхсветовой скоростью, простой факт наблюдения за экспериментом может изменять его результаты. Другими словами, поведение частиц в микромире меняется в зависимости от того следим мы за ними или нет.

Это открытие было сделано Томасом Юнгом. Ученый пропускал фотоны сквозь металлическую пластину с двумя прорезями. Частицы, проскочившие в прорези, засвечивали проекционный экран позади пластины. Результаты эксперимента озадачивают ученых по сей день. После того как электрон был запущен в экран он оставлял на проекторе такой след, как будто сквозь щели барьера пропустили не один электрон, а сразу два. Так, как если бы микрочастица каким-то образом сама себя клонировала и прошла сквозь обе щели одновременно. Но как один объект может быть в двух местах одновременно?

Волновая интерференция в опыте Юнга

Пытаясь приблизиться к разгадке этого феномена, физики проследили за движением электронов, фотонов и других субатомных частиц. Они не просто изучали следы, оставленные на экране, они наблюдали за моментом прохождения частиц сквозь прорезь и открыли нечто поразительное.

Когда они следили за электронами, те вели себя как частицы, но, если наблюдение в этот момент не велось, электроны вели себя как волны, а экран фиксировал их интерференцию, что совершенно необъяснимо. Ученые сделали вывод, что сам процесс наблюдения влиял на природу субатомных частиц. Это явление ученые назвали «принципом квантовой неопределённости».

Это одно из самых загадочных явлений в квантовой физике. Смотрим на объект — видим частицу, не смотрим — имеем дело уже с волной. Когда результат эксперимента были опубликованы, ученые пришли в замешательство. Эйнштейн по этому поводу сказал: «Я не верю в квантовую физику, потому что луна на небе существует, даже если я на нее не смотрю»

Однако, современные ученые, повторив эксперимент Юнга с использованием современных инструментальных средств, не просто повторили результаты двухвековой давности, но и столкнулись с новым явлением, изменившим само восприятие времени.

Электроны все так же пропускали сквозь пластину с двумя прорезями. Однако теперь ученые смогли начать наблюдение тогда, когда электроны уже прошли сквозь отверстие в пластине, но всё еще не ударились о проекционный экран.

В результате электроны, которые до начала наблюдения вели себя как волны, в момент начала наблюдения, становились частицами. Как если бы электроны в момент начала наблюдения вернулись назад во времени и начали вести себя как частицы, отменив свое волновое поведение до начала наблюдения.

Это одна из самых больших загадок квантового мира. Она же является самой большой проблемой при изучении микрочастиц. Сталкиваясь с принципом неопределенности, физики понимают, что просто не в состоянии с точностью определить местоположение частиц из-за их волновых свойств.

И, что более удивительно, когда ученые пытаются поймать частицу, она генерирует энергию и покидает пространство наблюдения до того, как ее местоположение и скорость будут определены. Принцип неопределенности показывает нам, что сама природа не позволяет поймать свои фундаментальные частицы.

Несмотря на всю странность этого явления, может быть это и есть основной принцип существования нашего мира — мы просто ничего не можем знать с абсолютной точностью.

ХХI век: тёмная материя и Мультивселенная

Сегодня мы знаем, что Вселенная расширяется ускоренно: этому способствует давление «тёмной энергии», которая борется с силой тяготения. «Тёмная энергия», природа которой до сих пор не ясна, составляет основную массу Вселенной. Чёрные дыры представляют собой «гравитационные могилы», в которых исчезают вещество и излучение, и в которые, предположительно, превращаются погибшие звёзды.

Возраст Вселенной (время с начала расширения) предположительно оценивают в 13-15 миллиардов лет.

Это может быть интересно

Красота Вселенной

Мы осознали свою неуникальность — ведь вокруг столько звёзд и планет. Поэтому вопрос возникновения жизни на Земле современными учёными рассматривается в контексте того, почему вообще возникла Вселенная, где такое стало возможным.

Галактики, звёзды и вращающиеся вокруг них планеты, да и сами атомы существуют только потому, что толчок тёмной энергии в момент Большого взрыва оказался достаточным, чтобы Вселенная не свернулась снова, и в то же время таким, чтобы пространство не разлеталось слишком сильно. Вероятность такого очень мала, поэтому некоторые современные физики-теоретики предполагают, что существует множество параллельных Вселенных. 

Впрочем, опровергнуть это с помощью эксперимента невозможно, поэтому другие учёные полагают, что концепцию Мультивселенной следует считать скорее философской.

Подробнее об этом — в книге Алана Лайтмана «Случайная Вселенная: мир, который мы думали, что понимаем».

Антиматерия и материя

Предположительно, на ранних этапах существования Вселенной симметрия между частицами и античастицами была нарушена. Преобладание частиц оценивается как 1 частица на 1 млрд пар частица-античастица. Почти все античастицы аннигилировали при встрече с частицами, поэтому мы наблюдаем их такое ничтожно малое количество.

Возможно, нарушение симметрии в ранней Вселенной как-то связано с различиями свойств таких короткоживущих частиц как К-мезоны и различиями свойств материи и антиматерии за счет существования трех поколений кварков. Возможно, это как-то связано и с очарованными мезонами — это короткоживущие частицы, которые могут переключаться между двумя состояниями: частицы и античастицы. В июне 2021 года это выяснили ученые из Оксфорда.

Как бы то ни было, весь видимый мир в теории состоит из частиц. По крайней мере, доступный нам мир — это материя. Причем из всего огромного сонма частиц, весь мир состоит всего из трех: две — это нуклоны: протон и нейтрон (нуклонами называются потому что они составляют ядро атома) и во внешней оболочке атома — электроны. Этот феномен — перекос в сторону частиц — получил название Барионная асимметрия Вселенной. Барионы — это тяжелые частицы, к которым относятся также протоны и нейтроны. Кроме того, к барионам относятся и другие тяжелые частицы, состоящие из кварков. И у каждого бариона есть антибарион, который состоит из соответствующих антикварков. Но все эти частицы обладают крайне малым сроком жизни, так что их следует оставить в стороне.

Барионная асимметрия — вопрос исключительно космологии и физики частиц. Если бы барионов и антибарионов было поровну и не было бы никакого различия свойств между материей и антиматерией, то как показал академик Андрей Сахаров в 1967 году, вся Вселенная превратилась бы в излучение — очевидно, этого не произошло. Но может быть материя и антиматерия не были «смешаны» в ранней Вселенной однородно и просто разлетелись в разные стороны — в нашем уголке преобладает материя, а где-то есть области, где антизвезды составляют антигалактики?

Теоретически это возможно, но очень маловероятно, потому что плотность ранней Вселенной была слишком велика, чтобы большие сгустки могли просто так разлететься в разные стороны предварительно не проконтактировав.

И все же антизвезды ищут. Для их обнаружения нужно зарегистрировать ядра антигелия, поскольку только антигелий может гарантировать, что образовался не под воздействием космических лучей — антипротоны и антидейтероны (ядро тяжелого изотопа водорода — дейтерия, состоит из антипротона и антинейтрона) такого гарантировать не могут. А вот ядро антигелия «собраться» случайно практически не может, так что если его зарегистрируют, значит оно прилетело к нам как продукт термоядерных реакций антизвезды.

Постнаука

В 2021 году была опубликована статья, авторы которой создали каталог из 14 кандидатов в антизвезды, проанализировав данные космического телескопа Fermi. Телескоп зарегистрировал именно ядра антигелия.

Дмитрий Казаков, доктор физико-математических наук, Объединенный институт ядерных исследований, Дубна:

«Проблема антисимметрии Вселенной по отношению материи и антиматерии действительно серьезна и давно уже обсуждается в физике высоких энергий, но ясного понимания пока нет. Это связано со свойствами взаимодействия элементарных частиц и, возможно, с новыми частицами.

При изучении спектра космических лучей как раз регистрируют позитроны и антипротоны, их гораздо меньше на общем фоне и их можно регистрировать по сигналу аннигиляции. Так, например, пытаются зарегистрировать сигнал от темной материи. Но специально античастицы не изучают, в этом нет специального интереса. Мы знаем, что все частицы имеют античастицы и у них те же самые свойства. Тут нет загадки кроме того как во Вселенной образовался перекос в сторону частиц».

Футурология

Загадочные частицы: что ученые знают о космических лучах

Наглядная запись

Теперь возьмём для примера какой-нибудь химический элемент. Например, калий. В таблице Менделеева он имеет запись K и его можно найти под номером 19. Значит, у него имеется 19 электронов, которые нужно расфасовать по орбиталям в указанном порядке. Делаем это.

Сначала идёт уровень 1s. Подуровень s может содержать только 2 электрона. Число электронов записывается в виде маленького индекса над буквой. В данном случае это будет 1s2.

Следом по порядку идёт 2s. Тоже s и тоже только 2 электрона. 2s2 .

Дальше 2p. Смотрим, сколько электронов может содержать уровень p. 2p6.

Теперь снова возвращаемся на подуровень s, который опять-таки включает в себя всего лишь 2 электрона. 3s2 .

12 уже упорядочено. Осталось 7. И следующий уровень — 3p6.

Остался всего один электрон, который нужно разместить на следующем s-подуровне. В результате на нём остаётся одно свободное место — всего частиц может быть 2, но мы располагаем только одну оставшуюся. А записывается это как 4s1.

В одну строчку это всё записывается следующим образом: 1s2 2s2 2p6 3s2 3p6 4s1.

Важно учитывать, что это электронная конфигурация для основного состояния атома. В Периодической системе элементов у атомов тоже указаны исключительно те их свойства, которыми они обладают в своём основном состоянии. Но также они могут пребывать и в возбуждённом состоянии

Это происходит при сообщении им дополнительной энергии. Тогда электроны с положенных им орбиталей будут перескакивать на другие и запись будет несколько иной.

Но также они могут пребывать и в возбуждённом состоянии. Это происходит при сообщении им дополнительной энергии. Тогда электроны с положенных им орбиталей будут перескакивать на другие и запись будет несколько иной.

Теория Ломоносова

В первой половине XVIII века Михаил Васильевич Ломоносов изложил свою знаменитую теорию строения вещества. Сквозь своеобразную словесную вязь его научных трудов проступает образ мудрого и проницательного естествоиспытателя-материалиста, по взглядам — почти нашего современника. Он дерзновенно призывает «разумом достигнуть потаенного в безмерной малости вида, движения и положения первоначальных частиц, смешенные тела составляющих».

Михаил Васильевич Ломоносов

По его теории все вещества состоят из корпускул (так Ломоносов назвал молекулы). А корпускулы состоят из атомов, мельчайших неделимых частиц вещества, которые могут быть отличными друг от друга. Свойства вещества определяются набором различных атомов в корпускуле. Меткости такого определения могут позавидовать и современные ученые! Это же на самом деле так.

Видите, к каким выводам пришел Ломоносов? Даже через много лет ученые-естествоиспытатели не проводили такого различия между атомом и молекулой, то есть между элементами и соединениями.

Чтобы покончить с путаницей, участники химического конгресса, собравшегося в 1860 году, вынуждены, были решить вопрос о названии частиц… голосованием! С тех пор атомами стали считать наименьшее количество неделимого тела, заключенное в частицах. Химические элементы были признаны первичными и неизменными. Идея алхимиков о превращении одного элемента в другой еще никогда не казалась такой фантастической, как в тот период. Глубоким и незыблемым выглядело учение об электричестве и магнетизме. Газовые законы и термодинамика (наука о теплоте) уверенно входили в инженерную практику. Венцом познания природы казалась волновая теория света.

История моделей атома в физике

Античность:

  1. В Древней Греции философ Демокрит предложил идею, что материя состоит из неделимых и непроницаемых частиц, которые он назвал «атомами». Эта модель была чисто концептуальной и не была основана на экспериментальных данных.

Средние века и эпоха Просвещения:

  1. В XVI веке, итальянский ученый Джованни Бруно предложил идею о бесконечном количестве атомов во Вселенной и возможности существования других солнечных систем.
  2. В XVII веке, английский физик Роберт Бойль и его коллеги изобрели понятие элементарной частицы, названной «корпускулой».
  3. Впоследствии, в конце XVIII века, английский химик Джон Дальтон развил теорию атома, основанную на представлении о сферических и неделимых частицах различной массы и размера.

Классическая физика и атомная физика:

  1. В начале XIX века, Фарадей и Ампер провели эксперименты, которые подтвердили существование электрических зарядов и их взаимодействия.
  2. В 1897 году, Джозеф Джон Томсон открыл электрон, открыв тем самым первую частицу, которая составляет атом.
  3. В 1913 году, Днихон модифицировал модель атома Джей Джи Томсона, предложив модель планетарного атома, в котором положительно заряженное ядро окружено отрицательно заряженными электронами, атомное ядро было компактным и сферическим.

Теория квантовой механики и современные модели атома:

  1. В 1926 году, Эрвин Шрёдингер предложил математическую модель, известную как волновое уравнение Шрёдингера, описывающую поведение электронов в атоме в терминах вероятности.
  2. В 1932 году, Джеймс Чедвик открыл нейтрон, и это привело к модификации модели атомного ядра, предложенной Нильсом Бором, и включению нейтронов в атомные ядра.
  3. В настоящее время мы имеем модель атома, основанную на стандартной модели элементарных частиц и теории квантового поля. Она представляет атом как состоящий из протонов и нейтронов в ядре, вокруг которого движутся электроны на определенных энергетических уровнях.

История создания лазеров

Еще в 1916 году Альберт Эйнштейн работал над квантовомеханической теорией взаимодействия излучения и материи. Из нее вытекала возможность создания квантовых усилителей и генераторов электромагнитных волн. Хотя Эйнштейн об этом и не писал, написал Алексей Толстой в своем романе «Гиперболоид инженера Гарина». Это гиперболоид был типичным примером сверхмощного лазера. Хотя понятно, что Толстой о лазерах (которых еще не было) и о квантовой механике ничего не знал. Так что это была так – научная фантастика.

Первая попытка экспериментально обнаружить то самое индуцированное рабочим телом излучение была предпринята только в 1928 году. Но к каким-то значимым результатам не привела.

И только в 1955 году советские ученые Николай Басов и Александр Прохоров разработали действующий прототип лазера. Разумеется, он не был промышленным.

Эти работы были подхвачены американскими физиками. Через два года Чарльз Таунс и Артур Шавлов начали работать над принципами создания лазеров. Наконец, в 1960 году исследователи из Bell Laboratories Али Джаван, Уильям Беннетт и Дональд Хэрриот продемонстрировали первый в мире промышленный газовый лазер на смеси гелия и неона, который повсеместно применяется и в наши дни. После этого физики и инженеры всего мира включились в гонку по созданию всевозможных лазеров, которая идет и по сей день.

Кстати, Басов, Прохоров и Таунс получили в 1964 году Нобелевскую премию за свои революционные разработки.

Вот и скажи после этого, кто создал лазеры. Человечество.

Что такое материя?

Материя — это все, что занимает место в космосе, имеет связанные с ним массу, вес, объем, плотность и температуру и взаимодействует гравитационно. (хотя мы увидим странные случаи) с другими материальными телами. Вся Вселенная состоит из материи.

Даже в космических пустотах между галактиками есть частицы материи. Но из чего состоит материя? Что ж, ответить на этот вопрос не так-то просто. Фактически, это означало бы полностью погрузиться в мир квантовой механики, отрасли физики, которую можно резюмировать в следующем предложении, произнесенном одним из ее основателей: «Если вы думаете, что понимаете квантовую механику, вы не понимаете ее. понять квантовую механику. квантовая механика «.

Но давайте попробуем подвести итог. Чтобы понять, что такое материя, мы должны перейти к ее самому низкому уровню организации (ну, технически, ко второму низшему, чтобы не войти в квантовую физику и не заблудиться). Там мы находим атомы.

Чтобы узнать больше: «19 уровней организации материи».

Атомы — это строительные блоки материи. Без атомов нет материи. И дело в том, что абсолютно все объекты Вселенной, если бы мы могли опуститься до мельчайших, мы бы увидели, что они состоят из атомов.

А атом в основном состоит из ядра протонов (положительно заряженных субатомных частиц) и нейтронов (без электрического заряда), вокруг которых вращаются электроны (отрицательно заряженные). Мы не будем комментировать, что протоны и нейтроны, в свою очередь, образуются другими субатомными частицами или что один и тот же электрон может находиться в нескольких местах одновременно. Достаточно остаться с этой идеей.

Вам может быть интересно: «Кот Шредингера: о чем говорит нам этот парадокс?»

Важно иметь в виду, что, несмотря на то, что они представляют собой лишь одну тысячную размера атома (несмотря на модель, которую мы обычно держим в голове, если бы мы увеличили атом до размера футбольного поля, электроны были бы чем-то размером с булавочную головку по углам и сердцевине, теннисный мяч в центре), в ядре находится, благодаря протонам и нейтронам, 99,99% массы атома. Следовательно, истинная материя объекта находится в ядрах атомов, из которых он состоит

Да, именно в этих небольших структурах от 62 (в атоме водорода, самый маленький) до 596 пикометров (в атоме цезия) и заключается суть всего, что мы видим. Примечание: пикометр составляет одну миллиардную метра. Представьте, что метр делится на миллион миллионов частей. Вот вам размер атома

Следовательно, истинная материя объекта находится в ядрах атомов, из которых он состоит. Да, именно в этих небольших структурах от 62 (в атоме водорода, самый маленький) до 596 пикометров (в атоме цезия) и заключается суть всего, что мы видим. Примечание: пикометр составляет одну миллиардную метра. Представьте, что метр делится на миллион миллионов частей. Вот вам размер атома.

Итак, мы уже знаем, откуда берется материя. Но что заставляет его принимать такие разные формы и свойства? Очень просто. Объекты отличаются друг от друга, потому что они также имеют разные атомы.

В зависимости от количества протонов в ядре атома (количество электронов может совершенно различаться) мы будем иметь дело с тем или иным химическим элементом. Таблица Менделеева в настоящее время состоит из 118 элементов.. Все во Вселенной — их комбинация. То есть, что отличает атом углерода от атома железа, так это количество протонов в его ядре. Углерод имеет 6 протонов, а железо — 26.

Это общепринятая в настоящее время атомная модель.

И в зависимости от того, сколько у него протонов (при нормальных условиях количество электронов и нейтронов равно количеству протонов), атом будет взаимодействовать с другими определенным образом. Следовательно, именно элемент (а значит, и количество протонов) определяет свойства материи.

В итоге, материя — это все, что имеет массу и объем, что занимает пространство во Вселенной и состоит из атомов, который, в зависимости от рассматриваемого химического элемента, придаст этому объекту характеристики и свойства, которые будут определять его макроскопические проявления и, следовательно, позволят нам определить, с каким типом материи мы сталкиваемся.

Чтобы узнать больше: «3 части атома (и их характеристики)»

История открытия и строение

Понятия атома было известно еще в Древней Греции. Атомизм – физическая теория, которая гласит, что все материальные предметы состоят из неделимых частиц. Наряду с Древней Грецией, идеи атомизма параллельно развивался еще и в Древней Индии.

Не известно, рассказали тогдашним философам об атомах инопланетяне, или они додумались сами, но экспериментально подтвердить данную теорию химики смогли много позже – только в семнадцатом веке, когда Европа выплыла из пучины инквизиции и средневековья.

Долгое время господствующим представлением о строении атома было представление о нем как о неделимой частице. То, что атом все-таки можно разделить, выяснилось только в начале двадцатого века. Резерфорд, благодаря своему знаменитому опыту с отклонением альфа-частиц, узнал, что атом состоит из ядра, вокруг которого вращаются электроны.  Была принята планетарная модель атома, в соответствии с которой электроны вращаются вокруг ядра, как планеты нашей Солнечной системы вокруг звезды.

Планетарная модель

Современные представления о строении атома продвинулись далеко. Ядро атома, в свою очередь, состоит субатомных частиц, или нуклонов – протонов и нейтронов. Именно нуклоны составляют основную массу атома. При этом протоны и нейтроны также не являются неделимыми частицами, и состоят из фундаментальных частиц — кварков.

Ядро атома имеет положительный электрический заряд, а электроны, вращающиеся по орбите – отрицательный. Таким образом, атом электрически нейтрален.

Ниже приведем элементарную схему строения атома углерода.

Схема строения атома

Атом в физике: что это такое (определение термина)

Определение термина появляется ещё в античных рукописях. В переводе он означает «неделимый», ведь до середины XIX века считалось, что атом не имеет внутренней структуры, это мельчайшие частицы, из которых состоит вся материя и полевые образования. После открытия атомного ядра всё изменилось, плюс появилось новое направление – ядерная физика. Впервые наличие в атоме вращающихся элементарных частиц предсказал Бекетов в 1865 г. Только они объясняли выбросы энергии при протекании химических реакций.

Атом — это в физике микроскопическая структурная часть материи и мельчайший компонент химических веществ, которым присуще большинство его свойств. Из-за крохотных размеров его невозможно увидеть в оптический микроскоп – атом меньше длины световой волны. Ещё атомом называют связанную систему, состоящую из протонов и нейтронов.

Предполагается, что атом состоит из массивного ядра, в котором сконцентрировано минимум 99,9% массы «неделимого». Вокруг него вращается электронное облако как планеты вокруг Солнца.

Само ядро представлено положительно заряженными протонами и нейтронами с нейтральным зарядом. Количество электронов на электронных оболочках равняется числу позитронов. На орбитах носители зарядов удерживаются за счёт кулоновских сил. Если число электронов и протонов будет разным, образуется заряженный атом – ион. Системы нейтронов с протонами называются нуклонами, они связаны посредством сильного взаимодействия.

Количество протонов в ядрах колеблется от ноля (водород) до более чем сотни, соответствует номеру элемента в таблице Менделеева. Размер атома определяется радиусом крайней электронной орбиты, равняется приблизительно 10-10 м, ядро меньше него минимум на 4 порядка: 10-14. Отсюда следует, что атом практически на 99,9% состоит из пустоты или пока не обнаруженных наукой элементов.

Атомы обозначаются названием химического элемента, рядом с которым указывается число нуклонов и протонов, входящих в состав его ядра, например, 2858Ni. Иногда обходятся без уточнения протонов: Ni-58.

Плазменное вещество

Плазменное вещество менее известно, чем предыдущие три состояния, но все же важно. Плазма — это четвертое состояние материи, и о нем мало что известно, потому что, хотя оно может быть получено искусственно (даже дома, но мы не будем выдвигать плохих идей), в естественных условиях оно встречается только в звездах

Плазменное вещество представляет собой жидкость, похожую на газ, хотя из-за высоких температур звезд (на их поверхности они достигают от 5000 до 50000 ° C, но в их ядре они достигают более 13000000 ° C), молекулы становятся электрически заряженными. Это придает ему внешний вид и химические свойства на полпути между газом и жидкостью.

Рекомендуем прочитать: «Как образуются звезды?»

I. Фермионы

В этот класс входят 12 обычных частиц и столько же античастиц. Они противоположны по заряду: например, античастица отрицательно заряженного электрона — это положительно заряженный позитрон.

Эти 12 частиц, в свою очередь, можно поделить на две группы по 6 штук: кварки и лептоны.

Как устроен атом

Атом состоит из ядра, в котором сосредоточено более 99 % его массы, и электронной оболочки, окружающей его, как облако. Электроны, составляющие внешнюю оболочку, — это элементарные частицы. Ядро же состоит из протонов и нейтронов (вместе они называются нуклонами). Протоны заряжены положительно, чтобы компенсировать отрицательный заряд электронов на внешней оболочке, а нейтроны, как следует из названия, вообще не имеют заряда и «склеивают» ядро, не давая ему распасться (как это происходит с радиоактивными элементами).

Кварки — любители ходить в парах

В отличие от электронов кварки не могут существовать в свободном состоянии и соединяются в пары. Эти пары называются мезонами — это частицы, которые перемещаются между протонами и нейтронами и удерживают ядро в стабильном состоянии. Три кварка образуют нуклоны — протон или нейтрон. Частицы, состоящие из четырех или пяти кварков, являются экзотическими и отчасти вызывают гравитационное взаимодействие между телами.

Лептоны — одиночки

Второй тип фермионов — лептоны, их свойства совершенно другие. Кварки не могут существовать поодиночке, а лептоны, наоборот, не могут соединяться (если это, конечно, не частица со своей античастицей: объединяясь, они исчезают, выделяя энергию).

Долгое время ученые не могли понять, в чем «сила» электрона. В конце концов они нашли этому одно разумное объяснение: электрон — это единственная стабильная заряженная частица из своего класса. Остальные 5 заряженных лептонов не существуют дольше 2 микросекунд: они либо распадаются на несколько более мелких частиц, либо, наоборот, соединяются в одну более крупную.

Нейтрино — неуловимые лептоны

Еще один вид лептонов — нейтрино, практически неуловимые частицы, которые движутся в космосе со скоростью света. Еще с середины ХХ века проводятся эксперименты, чтобы их поймать и изучить. Многое в этих «неуловимых» частицах уже исследовано, и ученые даже пытались создать коммуникацию с их помощью, но идея осталась лишь в планах. Нейтрино могут быть индикаторами различных процессов, происходящих в ядрах звезд. Например, в нашем Солнце протекает множество термоядерных реакций каждую секунду, и практически каждая такая реакция выделяет хотя бы одно нейтрино.

Нейтрино бывают нескольких видов: электронное, мюонное и тау-нейтрино. Все эти названия взяты не с потолка.

Понравилась статья? Поделиться с друзьями:
Зона исследователя
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: