Свет и звук — что есть что?

Синестезия

Один из самых необычных психоневрологических феноменов, при котором не совпадают род раздражителя и тип ощущений, которые человек испытывает. Синестетическое восприятие выражается в том, что помимо обычных качеств могут возникать дополнительные, более простые ощущения или стойкие «элементарные» впечатления — например, цвета, запаха, звуков, вкусов, качеств фактурной поверхности, прозрачности, объемности и формы, расположения в пространстве и других качеств, не получаемых при помощи органов чувств, а существующих только в виде реакций. Такие дополнительные качества могут либо возникать как изолированные чувственные впечатления, либо даже проявляться физически.

Выделяют, например, слуховую синестезию. Это способность некоторых людей «слышать» звуки при наблюдении за движущимися предметами или за вспышками, даже если они не сопровождаются реальными звуковыми явлениями.
Следует учитывать, что синестезия, скорее психоневрологическая особенность человека и не является психическим расстройством. Такое восприятие окружающего мира может почувствовать обычный человек путем употребления некоторых наркотических веществ.

Общей теории синестезии (научно доказанного, универсального представления о ней) пока нет. На денный момент существует множество гипотез и проводится масса исследований в данной области. Уже появились оригинальные классификации и сопоставления, выяснились определенные строгие закономерности. Например, мы ученые уже выяснили, что у синестетов есть особый характер внимания — как бы «досознательный» — к тем явлениям, которые вызывают у них синестезию. У синестетов — немного иная анатомия мозга и кардинально иная его активация на синестетические «стимулы». А исследователи из Оксфордского университета (Великобритания) поставили серию экспериментов в ходе которых выяснили, что причиной синестезии могут быть сверхвозбудимые нейроны. Единственное, что можно сказать точно, что такое восприятие получается на уровне работы мозга, а не на уровне первичного восприятия информации.

Звук

Что такое звук? Это тоже волна, но не электромагнитная, а вполне себе механическая упругая волна. Колеблются частицы среды (воздух, вода, твердое тело), и это колебание воспринимается барабанной перепонкой человеческих ушей. Частота звуков, которые слышат люди, лежит в диапазоне от 16 герц до 20 килогерц. Опять же, звуки ниже слышимого диапазона называются инфразвуком, а выше – ультразвуком.

То, что мы не слышим звук выше или ниже нашего предела восприятия, не значит, что его не слышат другие существа. Например, киты, летучие мыши, птицы и рыбы используют ультразвуковую эхолокацию для общения и навигации. Так, синие киты могут слышать друг друга на расстоянии до 30 километров.

Различают шумы и музыкальные звуки. Шумы обладают сплошным спектром, а музыкальные состоят из гармоник – колебаний определенной частоты.

Один из самых интересных фактов о звуке — это влияние звука на человека. Доказано, что звуки природы и классическая музыка влияют на здоровье положительно и обладают успокаивающим эффектом. Хотя здесь все очень индивидуально, и положительный эффект на здоровье может оказывать также и старый добрый трэш-метал.

Metallica

Скорость звука

Скорость звука в воздухе составляет 340 метров в секунду. Зная это, можно легко измерить расстояние до места, где ударила молния – достаточно лишь сосчитать секунды между вспышкой и громом, а потом умножить их на скорость.  Значение скорости звука может колебаться в зависимости от температуры и свойств среды. В отличие от скорости света скорость звука — это вполне преодолимый предел. Первым изобретением, которое наглядно продемонстрировало преодоление звукового барьера, был кнут. Все замечали, как он щелкает в руках у дрессировщика. Характерный щелчок обусловлен тем, что кончик кнута начинает двигаться со скоростью, большей скорости звука, а в момент перехода звукового барьера создается ударная волна. Также характерный хлопок слышен при переходе звукового барьера сверхзвуковым самолетом.

Сверхзвуковой самолет

В этой статье мы рассмотрели самые фундаментальные понятия в области природы света и звука, а также коснулись нескольких интересных фактов про свет и звук. Если Вам вдруг понадобится решить задачку по оптике или акустике, вспомните о наших авторах, которые помогут Вам справиться с проблемой максимально быстро и качественно. Напоследок, как всегда, предлагаем Вашему вниманию интересное видео. Удачи и до новых встреч!

https://youtube.com/watch?v=q5tpt9ylnTM

5. Акустика в части Центрального вокзала позволяет слышать шепот в комнате

Традиционно, если вы не хотите, чтобы вас услышал кто-то поблизости, вы шепчете. Шепот — это верный способ держать вещи в секрете и/или заставить себя выглядеть еще более подозрительно перед другими, которые теперь знают, что вы что-то говорите, но стараются сделать так, чтобы они этого не услышали. Это также вежливо в библиотеке или во время очень скучной рабочей встречи.

Отправляйтесь в столовую на Центральном вокзале Нью-Йорка, и вы обнаружите, что перешептывание не является чем-то секретным, по крайней мере, в одной части здания. Есть шепчущая галерея , место, где вы можете слышать шепот с другой стороны комнаты, даже сквозь шум толпы, если вы прислоняете ухо к стене.

Если один человек стоит у стены арки, а друг идет в противоположную сторону, они могут поддерживать разговор благодаря умной акустике, несмотря на то, что между ними находится целая толпа людей.

Поглощение ультразвуковых волн[]

Если среда, в которой происходит распространение ультразвука, обладает вязкостью и теплопроводностью или в ней имеются другие процессы внутреннего трения, то при распространении волны происходит поглощение звука, то есть по мере удаления от источника амплитуда ультразвуковых колебаний становится меньше, так же как и энергия, которую они несут. Среда, в которой распространяется ультразвук, вступает во взаимодействие с проходящей через него энергией и часть её поглощает. Преобладающая часть поглощенной энергии преобразуется в тепло, меньшая часть вызывает в передающем веществе необратимые структурные изменения. Поглощение является результатом трения частиц друг об друга, в различных средах оно различно. Поглощение зависит также от частоты ультразвуковых колебаний. Теоретически, поглощение пропорционально квадрату частоты.
Величину поглощения можно характеризовать коэффициентом поглощения, который показывает, как изменяется интенсивность ультразвука в облучаемой среде. С ростом частоты он увеличивается. Интенсивность ультразвуковых колебаний в среде уменьшается по экспоненциальному закону. Этот процесс обусловлен внутренним трением, теплопроводностью поглощающей среды и её структурой. Его ориентировочно характеризует величина полупоглощающего слоя, которая показывает на какой глубине интенсивность колебаний уменьшается в два раза (точнее в 2,718 раза или на 37%). По Пальману при частоте, равной 0,8 МГц средние величины полупоглощающего слоя для некоторых тканей таковы: жировая ткань — 6,8 см; мышечная — 3,6 см; жировая и мышечная ткани вместе — 4,9 см. С увеличением частоты ультразвука величина полупоглощающего слоя уменьшается. Так при частоте, равной 2,4 МГц, интенсивность ультразвука, проходящего через жировую и мышечную ткани, уменьшается в два раза на глубине 1,5 см.
Кроме того, возможно аномальное поглощение энергии ультразвуковых колебаний в некоторых диапазонах частот — это зависит от особенностей молекулярного строения данной ткани. Известно, что 2/3 энергии ультразвука затухает на молекулярном уровне и 1/3 на уровне микроскопических тканевых структур.
Глубина проникновения ультразвуковых волн
Под глубиной проникновения ультразвука понимают глубину, при которой интенсивность уменьшается на половину. Эта величина обратно пропорциональна поглощению: чем сильнее среда поглощает ультразвук, тем меньше расстояние, на котором интенсивность ультразвука ослабляется наполовину.

Обыкновенные наушники можно превратить в … микрофон

Вы, наверняка подвергаете сомнению выше приведённый факт, однако, это действительно так. Просто, для того, чтобы наушники превратились в микрофон необходимо подключить эти самые наушники ко входу микрофона, и тогда у вас появляется возможность использовать их вместо этого устройства, усиливающего звук. Как такое возможно? Дело в том, что самая простая конструкция наушников и микрофона создана по одинаковому принципу. Так, мембрана подключается к катушке с проводом, находящимся в магнитном поле от постоянного магнита. Вот только, когда мы имеем дело с наушниками, то ток, которые подаётся на катушку, преобразуется в своеобразные мембранные колебания, а когда мы имеем дело с микрофоном – то всё происходит с точностью до наоборот.

Опыт с электрическим звонком

Нетрудно доказать, что воздух проводит звуковые волны. Для этой цели производят следующий опыт: под стеклянный колпак воздушного насоса помещают электрический звонок, заставляют его непрерывно звенеть. Затем начинают насосом выкачивать воздух.

Звуковые волны. Опыт со звонком

Когда уменьшается количество воздуха под колпаком, мы видим звонок так же хорошо, как и раньше, потому что свет распространяется, когда воздуха нет. Но звук делается все тише и наконец совершению прекращается. Колебания звонка продолжают совершаться, но так как вокруг него больше нет воздуха, то он не может производить те волны. которые мы называем звуковыми. Если же воздух начинает снова входить под колпак, то звук восстанавливается. Этот простой опыт показывает нам не только то, что воздух служит проводником звука, но и то, что сила звука в значительной степени зависит от состояния воздуха.

Когда у нас появляется возможность сравнить скорость света со скоростью звука, то мы находим между ними огромное различие. Но видим огонь и дым при стрельбе из отдаленной пушки на несколько секунд раньше звука от ее выстрела. Свет распространяется так быстро, что даже значительное расстояние, на котором находится от нас действующее орудие, он проходит в какую-нибудь тысячную долю секунды; тогда как звук распространяется гораздо медленнее, и скорость его распространения при таком опыте очень легко вычислить.

Более причудливые факты

Интересные и жуткие факты:

  • в безвоздушном пространстве звуковые волны не распространяются, потому что нет ничего, чтобы им отталкиваться
  • мухи не слышат звука
  • животные с большими ушами слышат лучше, чем животные с маленькими ушами
  • слух лисы настолько хорош, что она может услышать скрип мыши на расстоянии 100 метров. Она может даже поймать звук мыши скребущей под землей!
  • эхо возникает, когда звуковые волны отскакивают от объекта, а не поглощаются
  • если вы постоянно кричите в течение 8 лет, 7 месяцев и 6 дней, вы произведете достаточно звуковой энергии, чтобы нагреть чашку кофе
  • самый громкий естественный звук на земле – это извержение вулкана

Теперь, когда вы узнали все эти удивительные и интересные факты о звуке, вы знаете, об огромной роли звука в нашей жизни, а может испортить нам жизнь.

Мы редко задумываемся о природе привычных нам вещей. Между прочим, это может оказаться очень интересно. Поговорим о том, что такое свет и звук, рассмотрим их природу и приведем несколько интересных фактов про звук и свет.

Что такое свет? Свет – это электромагнитное излучение

, длины волн которого лежат в диапазоне от 380 до 760 нанометров. Именно этот диапазон волн воспринимается нашими глазами как видимый свет. Так, волна определенной длины, отражаясь от предмета, попадает на сетчатку глаза, и мы решаем, что этот предмет, например, желтого цвета. Самой короткой длине волны соответствует фиолетовый свет, а самой длинной – красный. Тут вспоминается детская шпаргалка для запоминания цветов радуги: каждый (красный) охотник (оранжевый) желает (желтый) знать (зеленый) и так далее. Ниже приведем спектр электромагнитного излучения с указанием длин волн.

Как видно из рисунка, свет бывает не только видимым. В общем смысле под понятием «свет» понимают электромагнитное излучение, в том числе и не воспринимаемое человеческим глазом. Левее видимого излучения лежит область ультрафиолета, а правее – инфракрасное излучение. Перед ультрафиолетом есть еще более короткие волны — это космические лучи, гамма излучение и рентгеновское излучение.

Глава 3. Экспериментальная часть

Для измерения уровней шума объективным методом пользуются шумомерами. В этих приборах шум воспринимается с помощью широкополосного микрофона, который преобразует звуковые колебания в электрические. Последние усиливаются и подаются на выпрямитель стрелочного прибора(измеритель).

Мы измеряли уровень шума вторым методом. Мы использовали два шумомера, установленные в мобильный телефон, благодаря приложениям «шумомер» и «sound Meter».

Результаты исследования показывают, что в учебных кабинетах превышен допустимый уровень шума. Также значительно выше допустимого уровня уровень шума в кабинете музыки, в спортзале. В коридорах во время перемен, в столовой во время питания учащихся уровень шума приближен к допустимой норме.

3.1 Виды источников шумов в школе

В ходе наших наблюдений мы выявили, что основными источниками звуков и шумов в школе являются разговоры учителей, учащихся, крики, звонок (на урок и с урока), компьютеры, музыка на дискотеке, сотовые телефоны, наушники от сотовых телефонов, плееры, музыкальные центры, радиоприемники, магнитофоны.

3.2 Влияние акустических явлений на состояние учеников

Длительное воздействие шума оказывает влияние на психологическое состояние: учащиеся отмечают жалобы на быструю утомляемость, снижение внимания и сосредоточенности и работоспособности, ухудшение настроения, нарушение сна, общую слабость, повышение раздражительности.

Многим детям нравятся громкие звуки. Многих детей раздражают громкие разговоры, смех, крики, галдеж, звуки игр на компьютере, громкая музыка и т.д. Большинство учащихся осознают негативное влияние звука на состояние здоровья. Часть учеников не знают о вредном воздействии шума на состояние здоровья. Многие согласились с тем, что шум вызывает усталость после уроков и может стать причиной болезни.

Применение звуковых волн

Помимо ценности общения друг с другом, звук дает возможность наслаждаться музыкой и обогащать свое представление об окружающем мире. Кроме слышимого спектра существуют инфра- и ультразвук. Ниже и выше границ слышимости соответственно.

УЗИ (ультразвуковое исследование) позволяет «увидеть» внутренности пациента без скальпеля и небезопасного рентгеновского аппарата. Эхолокатор поставляет морякам информацию о глубинах и рельефе дна. Офицер-гидроакустик обнаружит спрятавшуюся подводную лодку. Характер отражения ультразвука поможет обнаружить скрытый дефект в ответственной детали.

Слабо затухающий в средах инфразвук предупредит о стихийном бедствии. Регистрирующие приборы обнаруживают и локализуют сотрясения почвы и скальных пород

Это важно для изучения и предсказания землетрясений. Таким же образом обнаруживаются запрещенные испытания ядерного оружия

Предупрежден – значит вооружен.

Предыдущая запись Длина волны — формулы, свойства и расчеты
Следующая запись «Конек-горбунок» краткое содержание сказки Петра Ершова – читать пересказ онлайн

Дифракция, интерференция[]

При распространении ультразвуковых волн возможны явления дифракции, интерференции и отражения.

Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустической волны велико, то явления дифракции нет.
При одновременном движении в ткани нескольких ультразвуковых волн в определённой точке среды может происходить суперпозиция этих волн. Такое наложение волн друг на друга носит общее название интерференции. Если в процессе прохождения через биологический объект ультразвуковые волны пересекаются, то в определённой точке биологической среды наблюдается усиление или ослабление колебаний. Результат интерференции будет зависеть от пространственного соотношения фаз ультразвуковых колебаний в данной точке среды. Если ультразвуковые волны достигают определённого участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях способствует увеличению амплитуды ультразвуковых колебаний. Если же ультразвуковые волны приходят к конкретному участку в противофазе, то смещение частиц будет сопровождаться разными знаками, что приводит к уменьшению амплитуды ультразвуковых колебаний.

Интерференция играет важную роль при оценке явлений, возникающих в тканях вокруг ультразвукового излучателя. Особенно большое значение имеет интерференция при распространении ультразвуковых волн в противоположных направлениях после отражения их от препятствия.

Стоячие волны

Если 2 волны с одинаковыми амплитудой, фазой и частотой движутся в противоположных направлениях, то при встрече они образуют 1 стоячую. На этом месте появляются чередующиеся участки максимумов амплитуд (зоны сложения или «пучности») и минимумов (зоны вычитания или узлы).


Звуки, которые движутся в противоположных направлениях, образуют стоячую волну.

В таком сигнале энергия не изменяется, т. к. переносится в равном количестве прямо и обратно.

Рассматриваемое явление влияет на акустическое восприятие игры музыкальных инструментов: в узлах басы почти не слышны, в «пучностях» звучат очень насыщенно.

В струне

Натянутая музыкальная струна генерирует поперечные колебания, а сама утрачивает первоначальное положение.

Колеблющаяся вибрирует закрепленными неподвижно концами и производит основной тон. Он состоит из комбинации стоячих волн. Их узлы находятся на зафиксированных концах.

Кроме того, вибрации в струне возникают в нескольких местах. При этом струна оказывается как бы разделена на равные части. Каждая из них тоже колеблется с образованием своих сигналов и производит дополнительные тоны меньшей амплитуды.

В духовых инструментах

Теория звука в струне применима к духовому музыкальному инструменту. Последний можно упрощенно представить в виде прямой трубы, в которой образуются стоячие волны. У открытого конца находится «пучность», у закрытого – узел.


В духовых инструментах применяется теория звука.

От чего зависит скорость распространения, длина и частота в разных средах

Звуковые волны могут распространяться в разных средах за исключением безвоздушного пространства, например, Космоса. Если под воздухонепроницаемый колпак, из-под которого откачан воздух, поместить электрический звонок и включить его, то звука слышно не будет. 

В воздухе скорость распространения звука впервые определили в 17 веке. Ученые Миланской академии наук установили на одном холме пушку, а на другом — наблюдательный пункт. Время засекли и в момент выстрела (по вспышке), и в момент приема звука. Вычислили скорость, она оказалась равной 330 метров в секунду.

В воде скорость распространения звука впервые была измерена в 1827 году на Женевском озере. Две лодки находились на расстоянии 13850 метров друг от друга. Под днище первой лодки подвесили колокол, а со второй опустили в воду простейший гидрофон (рупор). Во время удара в колокол на второй лодке включили секундомер. После вычислений выяснилось, что в воде звук распространяется в 4 раза быстрее, чем в воздухе: со скоростью 1450 метров в секунду.

В твердых телах скорость распространения звука тоже выше, чем в газах, что обусловлено наличием кристаллической решетки. Особенно наглядно это проявляется в металлах: например, при 0 °С у железа эта величина достигает 5130 м/с. 

Сравнительная таблица распространения звуковых волн в различных средах

Среда Скорость распространения звука, м/с Длина звуковой волны при частоте 500Гц, м
резина 54
двуокись углерода при 0 °С 258
воздух при 0 °С 332
воздух при 20 °С 340 0,68
пробка 500 1
водород при 0 °С 1286
свинец 1300
вода при 0 °С 1485 3
кирпичная кладка 3480
гранит 3950
дерево 4000 7
бетон 4250 8
стекло 5000
сталь 5010

Длина звуковой волны при различных частотах для воздуха (скорость звука 340 м/с): 

Частота, Гц Длина волны, м
20 17
100 3,4
500 0,68
1000 0,34
8000 0,04
20000 0,017

Вывод:

Основные физические формулы для расчета параметров звуковой волны приведены в разделе 2. 

Здесь рассмотрены частные случаи.

Для определения скорости звука с (м/с) в зависимости от среды используют следующие формулы: 

Слуховой аппарат и многие измерительные приборы чувствительны не к интенсивности звука I, а к среднему квадрату звукового давления, поэтому на практике используется величина уровень звукового давления (SPL), которую принято связывать с мощностью источника звука в ваттах. 

  • РдБ — зависимость уровня звукового давления (дБ) от мощности источника звука (Вт),
  • Рвт — мощность источника звука (Вт),
  • Роп — опорное значение мощности (Вт). 

На практике значение Роп принимают равным 1 Вт, следовательно, формулу можно представить следующим образом:

Данная формула очень актуальна и на техническом языке называется пересчет ватт в децибелы. 

Исследования по психоакустике помогают людям понять, как звуки влияют на нашу психологию и нервную систему

1. Их уровень измеряют в децибелах (дБ).
Максимальный порог для человеческого слуха (когда наступают уже болевые ощущения), это интенсивность в 120–130 децибел. А смерть наступает при 200.

  • Обычный разговор — это примерно 45–55 дБ.
  • Звуки в офисе — 55–65 дБ.
  • Шумы на улице — 70–80 дБ.
  • Мотоцикл с глушителем — от 85 дБ.
  • Реактивный самолёт при старте издает шум в 130 дБ.
  • А ракета — от 145 дБ.

2. Звук и шум не одно и то же.
Хотя обычным людям кажется и так. Однако для специалистов между этими двумя терминами — большая разница. Звук — это колебания, воспринимаемые органами чувств животных и человека. А шум — это беспорядочное смешение звуков.

3. Наш голос в записи иной, потому что мы слышим «не тем ухом».
Это звучит странно, но это так. А все дело в том, что когда мы говорим, то воспринимаем свой голос двумя путями — через внешний (слуховой канал, барабанную перепонку и среднее ухо) и внутренний (через ткани головы, которые усиливают низкие частоты голоса).

А во время прослушивания со стороны задействован только наружный канал.

4. Некоторые люди могут слышать звук вращения своих глазных яблок.
А также свое дыхание. Это происходит из-за порока внутреннего уха, когда его чувствительность повышена сверх нормы.

5. Шум моря, который мы слышим через морскую раковину,
на самом всего лишь звук крови, протекающей по нашим сосудам. Такой же шум можно услышать, приложив к уху обычную чашку. Попробуйте!

6. Глухие все же могут слышать.
Один только пример этого: знаменитый композитор Бетховен, как известно, был глухим, однако мог создавать великие произведения. Каким образом? Он слушал… зубами! Композитор приставлял к роялю конец трости, а другой конец зажимал в зубах — так звук доходил до внутреннего уха, которое у композитора было абсолютно здоровым, в отличие от уха внешнего.

7. Звук может превращаться в свет.
Такое явление называется «сонолюминесценция». Возникает, если в воду опустить резонатор, создающий сферическую ультразвуковую волну. В фазе разрежения волны из-за очень низкого давления возникает кавитационный пузырёк, который некоторое время растёт, а затем в фазе сжатия быстро схлопывается. В этот момент в центре пузырька возникает голубой свет.

8. «А» — самый распространённый в мире звук.
Он есть во всех языках нашей планеты. А всего в мире их насчитывается около 6,5–7 тысяч. Больше всего людей говорят на китайском, испанском, хинди, английском, русском, португальском и арабском.

9. Нормой считается, когда человек слышит негромкую разговорную речь
с расстояния не менее 5–6 метров (если это низкие тона). Или при 20 метрах при тонах повышенных. Если вы плохо слышите, что говорят с расстояния 2–3 метров, стоит провериться у сурдолога.

10. Мы можем не замечать, что теряем слух.
Потому что процесс происходит, как правило, не одномоментно, а постепенно. Причем на первых порах ситуацию еще можно исправить, однако человек не замечает, что с ним «что-то не так». А когда наступает необратимый процесс, поделать ничего уже нельзя.

Начальником быть хуже, чем подчинённым: удивительный эксперимент Дидье Дезора

Самое старое вещество на Земле старше Солнца

Чем обусловлено звучание разных музыкальных инструментов

Принципы извлечения звуков одинаковы для всех инструментов, но получаемые мелодии разные.

Звучание инструмента обусловлено наличием:

  • колеблющихся элементов (струн или воздушных столбов);
  • механизма воздействия на них (пальцев музыканта, смычка скрипки и др.);
  • резонатора для связи с окружающим воздухом.

Большинство музыкальных инструментов не позволяет получить звук одной частоты: дополнительно возникают обертоны и гармоники. Если в генерируемых сигналах гармоники отсутствуют, мелодии не образуются. В этом случае устройства (например, барабаны, литавры) используют для подчеркивания ритма.

Струнные инструменты

Пальцы гитариста или смычок скрипача приводят в движение струны. Звуковые волны от их колебаний передают энергию на корпус инструмента. Последний тоже начинает колебаться, а человеческое ухо воспринимает музыкальный сигнал.

Смычок скрипача создает движение струн.

На его качество влияют:

  1. Материал, из которого сделан корпус инструмента. Так, домры изготавливают из белого клена, акустические гитары – из ливанского кедра, электрогитары – из пластика или оргстекла.
  2. Форма и конфигурация инструмента. Это характеристики, которые изобретались и совершенствовались веками. Они не поддаются объяснению акустической наукой.
  3. Длина и диаметр струн. Звук тем выше, чем тоньше струна.

Клавишные

У рояля и пианино механизм звучания одинаковый: на раму натянуты струны, вокруг них располагаются резонирующий корпус, клавиши и педали. При нажатии клавиш деревянные молоточки ударяют по струнам. Их вибрация создает звук.

Для каждой ноты настроена своя струна.

Тембр тона получается насыщенным и однородным по следующим причинам:

  1. Из-за массивной деки диапазон формант очень широк.
  2. Большинство гармоник возникает на низших частотах.
  3. Удар молоточком в строго обозначенную точку струны подавляет диссонирующие с основной частотой гармоники.

При нажатии клавиш молоточки ударяют по струнам.

Духовые инструменты

Способы извлечения звука:

  1. Колебания воздуха в трубе цилиндрической формы с острым краем резонатора.
  2. Колебания гибкой поверхности язычка.

В первом случае поток воздуха выходит из щели и разбивается острым клинообразным препятствием. По разные стороны клина образуются вихри – «краевые тоны». Они возбуждают воздушные столбы во флейте, органе. При этом основная частота образуемых гармоник находится в обратной зависимости от длины трубы.

Во втором гибкий язычок (трость) колеблется в воздушном потоке. Когда воздух проходит через щель, трость втягивается в нее и перекрывает отверстие. При отсутствии потока она возвращается обратно и процесс повторяется. Так устроены кларнет, саксофон, гобой.

Ударные

Удар по телу барабана, ксилофона, треугольника возбуждает звуковые колебания.

Отличия ударных инструментов от клавишных:

  1. Колеблющееся тело не ведет к образованию гармонических обертонов.
  2. Тело инструмента звучит без дополнительного резонатора.

Вместо мембраны иногда используют стержень из твердого материала, как в ксилофоне, камертоне, металлическом треугольнике.

Кожаная мембрана в барабане округлой или овальной формы – двумерный аналог струны, но отличается от нее собственным набором частот без гармонического компонента. Гармоники все-таки можно получить, если в радиальном направлении изменить толщину мембраны. Так сделана табла – классический индийский инструмент.

Понравилась статья? Поделиться с друзьями:
Зона исследователя
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: